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ABSTRACT

Unmanned probes are the primary technologies used when exploring celestial bodies in

our solar system. As these deep space exploration missions are becoming more and more

complex, there is a need for advanced autonomous operation capabilities in order to meet

mission objectives. These autonomous capabilities are required as ground-based guidance and

navigation commands will not be able to be issued in real time due to the large distance

from the Earth. For long-duration asteroid exploration missions, this also entails how to keep

the spacecraft around or on the body in order for the mission to be successfully completed.

Unlike with larger bodies such as planets, though, the dynamical environment around these

smaller bodies can be difficult to characterize. The weak gravitational fields are not uniform

due to irregular shapes and non-homogeneous mass distribution, especially when orbiting in

close-proximity to the body. On top of that, small perturbation forces such as solar radiation

pressure can be strong enough to destabilize an orbit around an asteroid.

The best solution for keeping a spacecraft in orbit about a small body is to implement some

form of control technique. With conventional propulsion thrusters, active control algorithms

tend to have a higher than acceptable propellant requirements for long-duration asteroid explo-

ration missions, which has led to much research being devoted to finding open-loop solutions

to long-term stable orbits about small bodies. These solutions can prove to be highly sensitive

to the orbit’s initial conditions, making them potentially unreliable in the presence of orbit

injection errors. This research investigates a fuel-efficient, active control scheme to safely con-

trol a spacecraft’s orbit in close-proximity to an asteroid. First, three different gravitational

models capable of simulating the non-homogeneous gravity fields of asteroids are presented:

the polyhedron gravity shape model, a spherical harmonics expansion, and an inertia dyadic

gravity model. Then a simple feedback controller augmented by a disturbance-accommodating

filter is employed to ensure orbital stability. Using these models and controller, several orbiting
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cases as well as body-frame hovering are investigated to test the viability and fuel-efficiency

of the proposed control system. The ultimate goal is to design an active orbit control system

with minimum ∆V expenditure.
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CHAPTER 1. INTRODUCTION

1.1 Motivation

Unmanned, robotic probes are the main tools at our disposal for studying celestial bodies

such as asteroids, comets, and planets in our solar system. Of particular interest is to use these

probes to explore the smaller, lesser known bodies such as asteroids or comets. Scientific interest

in these objects focuses mainly on what they can tell us about the evolution and diversity of our

solar system. As deep space exploration missions to these bodies become increasingly complex,

spacecraft will require greater autonomous capabilities for systems such as guidance, navigation,

and control as commands cannot be issued in real time. This is due to the need to first generate

the proper commands on the ground based on measurements sent back by the spacecraft and

then sent to the spacecraft from Earth causing a significant time delay between measurements

and control commands. A primary concern for long-duration exploration missions operating

in close-proximity to small bodies is how to reliably ensure the spacecraft remains in orbit

around the body because many of the perturbing forces such as irregular gravitational fields

are generally not well known in advance. On the other hand, enabling such a mission would

require a thorough understanding of the dynamical environment around such a small body, or

at the very least a control system capable of handling perturbing forces.

In the environment around an asteroid, relevant perturbation forces include the small, non-

uniform gravitational field caused by a non-homogeneous mass distribution or irregular shape,

solar radiation pressure, third-body gravitational effects, etc. For close-proximity operations,

this results in highly perturbed, non-Keplerian orbits, which are difficult to characterize and

predict [1]. It has also been shown by Scheeres [2], that the individual or combined effects of

these forces can cause enough velocity change destabilize orbits, and cause the spacecraft to
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impact of escape the asteroid.

The best solution to prevent something like this from occurring would be to implement

some form of orbit control technique. In the case of the NEAR Shoemaker mission, one of the

first missions to orbit an asteroid, near-continuous contact was maintained with the spacecraft

with orbital correction maneuvers (OCMs) being designed and uploaded on a daily basis with

careful consideration given to the orbit’s stability [1, 3, 4]. While successful, this approach

is very “hands on”, and the spacecraft cannot react to unforeseen circumstances on its own.

Large blocks of time were also required each day to download navigation measurements from

the spacecraft, and then to upload ground-based navigation commands. More recently, NASA’s

Dawn spacecraft, which recently orbited the minor planet Vesta in 2011-2012 and is now en

route to Ceres, handled orbital operations in a very similar manner with optical navigation

data being downloaded to Earth daily [5]. The lowest orbit used in this mission around Vesta,

though, was only 450 km in radius to avoid potential impact, which decreases the resolution

of the camera images. Another proposed control solution was to hover above the body as was

done in the JAXA Hayabusa mission to Itokawa [6, 7]. Hovering above a fixed-point above

the asteroid is generally only appealing, from a scientific view, if it was desired to land on a

particular part of the body. The propellant requirements for hovering and most forms of active

control also tend to be substantially high, which could lead to shorter mission durations and a

limited scientific return.

In an effort to avoid the requirements of active control, there has been much research devoted

to finding open-loop solutions of orbits about small bodies and their stability bounds [2, 8–

15]. While it is possible to find orbits that remain stable for great lengths of time, Figure 1.1

shows how three different orbits with similar initial conditions, affected only by the irregular

gravitational field of the asteroid 433 Eros, can produce radically different results. The first

orbit begins at a radius of 32.9 km along the positive inertial X-axis with a velocity equal to

that of the local 2-body circular velocity. After numerically simulating the orbit for over a

week, the orbit remains stable about the body. The second orbit has a radius of 32.8 km also

at the local circular velocity, but is shifted 45◦ from the X-axis. Here the orbit remains about

the body for over a week before finally escaping. The third orbit begins at a radius of 27.85
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(b) Stable orbit with 5 percent velocity injection error.

Figure 1.1 Various orbits around 433 Eros. The coordinate system is an inertial frame fixed

at Eros’ center of mass with the positive Z-axis along the north pole spin axis.

Eros is shown at initial conditions.

km along the inertial Y-axis with the local circular velocity. The orbit first travels far away

from the body twice before impacting. Even though stable orbits can be found, Figure 1.1

also shows how an orbit injection error of 5 percent in the velocity is enough to destabilize the

previous stable orbit, and cause the spacecraft to escape the body. Given the sensitivity of the

dynamic environment at asteroids and comets to initial conditions, it is not practical to rely

entirely upon open-loop solutions to keep a spacecraft in orbit about such a body.

1.2 Objectives and Organization

This research proposes a closed-loop alternative to open-loop orbiting with relatively small

∆V requirements. Such control capabilities would be invaluable in the areas of asteroid ex-

ploration as less time would have to be spent ensuring orbital stability on the ground, and

could be devoted to the mission’s scientific objectives instead. First, Chapter 2 will define the

relevant coordinate system frames, and describe the equations of motion for an orbiting body.

Next three different gravity models will be presented: the polyhedron shape model derived

by Werner and Scheeres [16], the classical spherical harmonic expansion [17], and an inertia

dyadic gravity model [18, 19]. Chapter 3 presents the control algorithms and the method for
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reducing ∆V. The results are then presented in Chapter 4 followed by the conclusions and

recommendations for further work in Chapter 5.
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CHAPTER 2. DYNAMIC ENVIRONMENT MODELING

2.1 Coordinate Systems

Three separate coordinate systems are utilized in this work: a body-fixed frame (x, y, z),

an inertial frame (X,Y, Z), and a spherical system (r, φ, λ). For the rest of this paper, lower

case letters will denote quantities in the body-fixed frame and uppercase in the inertial frame.

Each of these systems share their origins at the center of mass, and have the same z-axis, about

which it is assumed the asteroid spins with a constant rotation rate ω. The body-fixed frame is

used for integration of the equations of motion as well as hovering cases. The system aligns the

x-, y-, and z-axes along the axes of minimum, intermediate, and maximum inertia respectively.

The inertial frame shares its origin with the body-fixed frame, and is co-aligned with the body-

fixed frame at the start of each simulation. Lastly, the spherical coordinate system measures a

positive longitude angle (λ) from the body-fixed x-axis and a positive latitude angle (φ) from

the xy-plane. Generally only the body-fixed and inertia frame will be used except when using

the spherical harmonic gravity model. These systems are illustrated in Figures 2.1-2.2.

2.2 Dynamic Equation

For orbiting and proximity operations around an asteroid where the only perturbing force

is gravity, the acceleration of the spacecraft in the body-fixed frame is

~̈r = ~̈r|B + 2~ω × ~̇r|B + ~ω × (~ω × ~r) = ~g + ~u (2.1)

where ~r is the spacecraft’s position vector, ~̇r|B is the time derivative of ~r in the body-fixed

frame, ~̈r|B is the second time derivative of ~r in the body-fixed frame, ~g is the gravitational

acceleration, ~ω is the angular velocity vector of the asteroid, and ~u is the applied control
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Figure 2.1 Inertial and body-fixed frame relation.

accelerations. Since it is assumed the asteroid has a uniform angular velocity about the z-axis,

no ~̇ω term is included in Equation (2.1).

In the inertial frame, the dynamical equation is more simply expressed as

~̈r = ~g + ~u (2.2)

As the body-fixed frame is uniformly rotating about the z-axis, these two frames are related

by 
X

Y

Z

 =


cos(ωt) − sin(ωt) 0

sin(ωt) cos(ωt) 0

0 0 1



x

y

z

 (2.3)

2.3 Spherical Harmonics Expansion

A classical approach to gravity modeling is to use a spherical harmonics expansion. Al-

though reliable for modeling gravity during orbiting missions with the proper coefficients, the

equations are only valid outside of the minimum circumscribing sphere around the body. The

potential function in spherical harmonics is expressed as a double summation involving the
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Figure 2.2 Spherical coordinate system with respect to the body-fixed frame.

associated Legendre polynomials, Pn,m, and the harmonic coefficients, Cn,m and Sn,m [17], as

follows:

U =
µ

r

∞∑
n=0

n∑
m=0

(
R

r

)n
Pn,m[sin(φ)]{Cn,m cos(mλ) + Sn,m sin(mλ)} (2.4)

Pn,m[sin(φ)] =
1

2nn!
(1− sin2(φ))m/2

dn+m

d sin(φ)n+m
(sin2(φ)− 1)n (2.5)

where µ is the gravitational parameter, R is the reference radius of the circumscribing sphere,

φ is the latitude, and λ is the longitude. It should be noted that all Sn,0 equal zero, and C0,0 is

one so that a zeroeth order expansion is the same as simple two body orbital motion. Should

the coordinate system have its origin at the attracting body’s center of mass, the coefficients

C1,0, C1,1, and S1,1 are all zero. In such a case, Equation (2.4) can be expressed as

U =
µ

r
[1 +

∞∑
n=2

n∑
m=0

(
R

r

)n
Pn,m[sin(φ)]{Cn,m cos(mλ) + Sn,m sin(mλ)} (2.6)

Here we will use the more general case given in Equation (2.4) to calculate the gradient

of the potential in spherical coordinates before converting to a cartesian coordinate system to

determine the gravitational acceleration vector, as follows:

~g =
∂U

∂r
~er +

1

r

∂U

∂φ
~eφ +

1

r cos(φ)

∂U

∂λ
~eλ (2.7)
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where

∂U

∂r
= − µ

r2

∞∑
n=0

n∑
m=0

(
R

r

)n
(n+ 1)Pn,m[sin(φ)]{Cn,m cos(mλ) + Sn,m sin(mλ)} (2.8a)

∂U

∂φ
=
µ

r

∞∑
n=0

n∑
m=0

(
R

r

)n
{Pn,m+1[sin(φ)]−m tan(φ)Pn,m[sin(φ)]}{Cn,m cos(mλ)

+Sn,m sin(mλ)} (2.8b)

∂U

∂λ
=
µ

r

∞∑
n=0

n∑
m=0

(
R

r

)n
mPn,m[sin(φ)]{Sn,m cos(mλ)− Cn,m sinmλ} (2.8c)

The gravitational acceleration vector can then be converted from spherical coordinates to the

body-fixed frame using the following transformation matrix

T =


cos(φ) cos(λ) − sin(φ) cos(λ) − sin(λ)

cos(φ) sin(λ) − sin(φ) sin(λ) cos(λ)

sin(φ) cos(φ) 0

 (2.9)

The derivation above assumes the case when the harmonic coefficients are not normalized.

Often the coefficients will be given as normalized values to avoid numerical difficulties associated

with of the gravitational coefficients becoming very small as the degree and order get large. In

some computers, this would introduce truncation errors so normalization becomes necessary to

prevent inaccuracy. One method of normalization used in this work is

∏
n,m

=

√
(n+m)!

(n−m)!k(2n+ 1)
(2.10)

k = 1 if m = 0

k = 2 if m 6= 0

S̄n,m =
∏
n,m

Sn,m C̄n,m =
∏
n,m

Cn,m P̄n,m =
Pn,m∏
n,m

(2.11)

It is important to remember to normalize the Legendre polynomials as well when using

normalized coefficients because their product must remain the same (i.e. C̄n,mP̄n,m = Cn,mPn,m

and S̄n,mP̄n,m = Sn,mPn,m)

2.4 Polyhedron Shape Model

The polyhedron gravitational model can be advantageous when the gravitating body has a

complex, irregular shape. Although computationally slower than using a spherical harmonics
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Figure 2.3 Illustration of the unit facet normal and unit edge normal vectors.

expansion, the model is valid anywhere around the body, whereas the spherical harmonics

expansion is only valid outside of a circumscribing sphere. Here we will show the equations

used to simulate the gravitational attraction of a polyhedron model. Note that these equations

assume a constant density, and that the shape model uses triangular facets. The complete

derivation is given by Werner and Scheeres in [16]. We will start with the potential function

described as

U =
1

2
Gρ

∑
e∈edges

Le~re · Ẽe · ~re −
1

2
Gρ

∑
f∈facets

ωf~rf · F̃f · ~rf (2.12)

where G is the gravitational constant, ρ is the density, ~re is a vector from a point in space to

an edge on the polyhedron model and ~rf to a facet, Ẽe is an edge dyad, Le is a dimensionless

per-edge factor, F̃f is a facet dyad, and ωf is a dimensionless per-facet factor. Ẽe and F̃f are

given by

Ẽe = ~nA~n
A
21 + ~nB~n

B
12 (2.13)

F̃f = ~nf~nf (2.14)

where ~nf , ~nA, and ~nB are outward-facing unit normal vectors and ~nA21 and ~nB12 are outward-

facing edge unit normal vectors. A graphical illustration of these unit vectors is shown in
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Figure 2.3. For a coordinate system, whose origin lies within the polyhedron, the outward-

facing facet normal vectors can be calculated using

~nf = (~r2 − ~r1)× (~r3 − ~r2) = ~r1 × ~r2 + ~r2 × ~r3 + ~r3 × ~r1 (2.15)

where ~r1, ~r2, and ~r3 are vectors from the origin to each of the three vertices that define the

triangular facet, and ~nf is the facet normal vector. In computer modeling applications, the

vertices that define each facet are stored in a matrix using either a clockwise or counterclockwise

rotation. The rotation direction refers to the direction around the facet you would have to travel

to find next vertex point. Equation (2.15) assumes a counterclockwise rotation. For clockwise

rotation storage, simply multiply the equation by -1. If the storage method is unknown, this can

also be checked by taking the dot product between ~nf and one of the vertex vectors. A positive

product indicates the vector is outward-facing. The outward facing edge normal vectors, also

assuming a counterclockwise rotation, are

~nf12 = (~r2 − ~r1)× ~nf (2.16a)

~nf23 = (~r3 − ~r2)× ~nf (2.16b)

~nf31 = (~r1 − ~r3)× ~nf (2.16c)

Next the dimensionless factors Le and ωf are given as

Le = ln
ri + rj + eij
ri + rj − eij

(2.17)

ωf = 2 arctan
~ri · ~rj × ~rk

rirjrk + ri(~rj · ~rk) + rj(~rk · ~ri) + rk(~ri · ~rj)
(2.18)

where ~ri, ~rj , and ~rk are vectors from the field point to one of the three vertices on the triangular

facet, ri,rj , and rk are the magnitudes of the vectors, and eij is the length of the edge connecting

~ri and ~rj . Note that per facet, there will be one value of ωf and three for Le (one for each

edge). The gradient of the potential in Equation (2.12) is expressed as

∇U = −Gρ
∑

e∈edges
LeẼe · ~re +Gρ

∑
f∈facets

ωf F̃f · ~rf (2.19)

The model also has a simple method for determining whether or not a field point is outside

of the polyhedron by evaluating the Laplacian of the potential
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∇2U = −Gρ
∑

f∈facets
ωf (2.20)

The sum of ωf goes to zero when the field point is located outside of the polyhedron, and 4π

inside the polyhedron. This is particularly helpful in knowing during a simulation whether or

not a spacecraft remained in orbit about a body, or crashed into the surface without requiring

much additional computation as ωf is already required in Equation (2.19). Equation (2.20),

however, will not provide any information if the spacecraft escaped the gravitational field of

the body. This can only be determined by analyzing the results after a simulation.

2.5 Inertia Dyadic Gravity Model

The third and final model is the inertia dyadic gravitational model as described in [18] and

[19]. For a continuous body with density ρ, the gravitational attraction on a point with mass

m can be expressed as

~F = −Gm
∫
~p(~p · ~p)−3/2ρdV (2.21)

where ~p is the position vector of a point mass m with respect to the body. If ~p is replaced by

a vector addition from a point in the body to its center of mass and then to the point mass as

shown in Figure 2.4, the gravitational force is found to be

~F = −Gm̄m
R2

[~er +
∞∑
i=2

~f (i)] (2.22)

where m̄ is the mass of the attracting body, R is the distance to the center of mass, ~er is a unit

vector along ~R, and ~f (i) is a collection of terms of the ith degree in |~r|/R. For example, the

term ~f (2) is given by

~f (2) =
1

mR2
{3

2
[tr(Ĩ)− 5~er · Ĩ · ~er]~er + 3Ĩ · ~er} (2.23)

where Ĩ is the inertia dyadic of the gravitating body and tr(Ĩ) is defined as

tr(Ĩ) = ~e1 · Ĩ · ~e1 + ~e2 · Ĩ · ~e2 + ~e3 · Ĩ · ~e3 (2.24)

where ~e1, ~e2, and ~e3 are unit vectors in the appropriate, orthogonal coordinate system. Since

Ĩ in matrix form is given as
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Figure 2.4 Illustration of vectors in the inertia dyadic gravity model.

Ĩ =

[
~e1 ~e2 ~e3

]
I11 I12 I13

I21 I22 I23

I31 I32 I33



~e1

~e2

~e3

 (2.25)

Equation (2.24) simplifies to

tr(Ĩ) = I11 + I22 + I33 (2.26)

According to Equation (2.26), Equation (2.24) can be thought of being similar to the trace

operation for matrices, which sums the diagonal components of a matrix. If the coordinate sys-

tem is aligned with the principal axes of the body, Equation 2.26 sums the principal moments of

inertia (i.e. Ixx+Iyy+Izz). When the inertia dyadic is given in the principal coordinate system

instead of in spherical coordinates, the ~f (2) term must be expressed in the body-fixed frame

instead of spherical coordinates. Using the transformation matrix from spherical coordinates

to the body-fixed frame in Equation 2.9, the unit vector ~er can be substituted with

~er = (cos(φ) cos(λ))~ex + (cos(φ) sin(λ))~ey + sin(φ)~ez (2.27)

This research will only use the ~f (2) term when calculating the gravitational force as the

higher moments of inertia have generally not been evaluated and made publicly available for
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asteroids and other small bodies. If desired, higher order terms can be included for increased

accuracy, which are expressed in terms of the higher moments of inertia [19].

2.6 Gravity Model Comparisons

When simulating an asteroid’s gravity, the polyhedron shape model requires noticeably more

computation time than either the spherical harmonic expansion or the inertia dyadic models.

This comes from the fact that the polyhedron model sums contributions from each facet and

facet edge. Reasonably accurate models will include at least several thousand facets as opposed

to a 15th order harmonic expansion, which sums 136 elements, or the moment-of-inertia model,

which sums elements equal to the order.

These gravity models are applied to the large, near-Earth asteroid 433 Eros. This asteroid

has measured center of mass is very close to the center of mass assuming a uniform internal

structure [20, 21]. This results in a near constant density, which is required for the polyhedron

gravity model. Eros is also a prime example of an asteroid with a very irregular shape with the

largest dimension being more than twice as long as the smallest dimension. Figure 2.5 plots the

strength of the gravitational field around the large, near-Earth asteroid 433 Eros using these

three models and basic 2-body, point mass gravity. As the magnitude of the gravitational force

is rather weak, the log of this force is used for graphical illustration. Away from the surface

of the body, both the polyhedron shape model and the harmonic expansion exhibit almost

identical results with the inertia dyadic model having the same trend but slightly different

magnitudes. Nearer to the surface, the inertia dyadic model starts to exhibit a relatively

strong gravitational field as opposed to the polyhedron shape model. This difference with the

inertia dyadic model is likely due to the low order used to calculate the gravitational force

(only the ~f (2) term was included). Of note as well is that the further away from the gravitating

body, the more closer each model becomes to a simple point mass approximation. For orbits

closer to the body, the non-uniform effects are more apparent, and diverge from the point mass

approximation. Figure 2.6 then focuses on the surface gravitational acceleration computed from

the polyhedron shape model. Consistent with the gravity field from Figure 2.5, the gravitational

force is relatively strong in the middle of the shape and decreases towards the far ends.
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Table 2.1 Characteristics of 433 Eros [20, 22].

Physical Properties Values

semi x-axis, y-axis, z-axis 16.7 km 8.6 km 6.3 km

bulk density 2.67 g/cm3

GM 4.463e-4 km3/s2

rotation period 5.27 hours

J2, J3 0.0525 0.0014

Inertia Matrix

Ixx, Ixy, Ixz 1.117e23 kg·m2 6.232e22 kg·m2 -2.257e20 kg·m2

Iyx, Iyy, Iyz 6.232e22 kg·m2 4.793e23 kg·m2 -2.589e19 kg·m2

Izx, Izy, Izz -2.257e20 kg·m2 -2.589e19 kg·m2 4.978e23 kg·m2

Normalized Inertia Matrix

Ixx, Ixy, Ixz 16.709 km2 9.319 km2 -0.034 km2

Iyx, Iyy, Iyz 9.319 km2 71.669 km2 -0.004 km2

Izx, Izy, Izz -0.034 km2 -0.004 km2 74.443 km2

 

 
Polyhedron Shape Model

X (km)

 

Y 
(k

m
)

-50 0 50
-60

-40

-20

0

20

40

60

Lo
g1

0(
|∇

U
|)

-5

-4

-3

-2

-1

 

 
15th Order Harmonic Expansion

X (km)

 

Y 
(k

m
)

-50 0 50
-60

-40

-20

0

20

40

60

Lo
g1

0(
|∇

U
|)

-5

-4

-3

-2

-1

 

 
Moment-of-Inertia Gravity

X (km)

 

Y 
(k

m
)

-50 0 50
-60

-40

-20

0

20

40

60

Lo
g1

0(
|∇

U
|)

-5

-4

-3

-2

-1
Inertia Dyadic 

 

 
2-Body Keplerian Gravity

X (km)

 

Y 
(k

m
)

-50 0 50
-60

-40

-20

0

20

40

60
Lo

g1
0(

|∇
U

|)

-5

-4

-3

-2

-1
2-Body Point Mass Gravity 

Figure 2.5 Gravitational field comparisons of the three gravitational models.
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(a) 3D model of 433 Eros based on
NEAR’s Laser Rangefinder measure-
ments.
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Figure 2.6 Image of 433 Eros derived from the NEAR Shoemaker measurements shown next

to the plate model used for the polyhedron gravity model.
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CHAPTER 3. STATE-FEEDBACK CONTROL

3.1 PD Control

Proportional-derivative (PD) control is a subset of the more general full-state feedback

control, a simple, common form of feedback control logic. This type of control attempts to

minimize the error between measured variables and their reference values by feeding back the

error multiplied by some controller gain as the control input. With PD control, the integral

control gains are set to zero leaving only the proportional and derivative gains. To implement

this control, the equations of motion will first be expressed in state-space form. As the gravita-

tional terms are highly nonlinear, they are included only as external disturbances (w) to give

a simple dynamical model as

ẋp = Apxp + Bpu + w (3.1)

xp =



X

Y

Z

Ẋ

Ẏ

Ż


, u =


ux

uy

uz

 , Ap =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, Bp =



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


, w =



0

0

0

wx

wy

wz


The control input (u) is defined to be

u = −K(xp − xr) (3.2)

where K is the control gain matrix to be determined, and xr are the reference variables. For

an arbitrary, periodic orbit, these values are given by
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Xr(t) = Ax cos(ωxt) (3.3a)

Yr(t) = Ay sin(ωyt) (3.3b)

Zr(t) = Az sin(ωzt) (3.3c)

Ẋr(t) = −Axωx sin(ωxt) (3.3d)

Ẏr(t) = Ayωy cos(ωyt) (3.3e)

Żr(t) = Azωz cos(ωzt) (3.3f)

where Ax, Ay, and Az are the amplitudes of the reference values along the X-, Y-, and Z-

axes respectively and ωx, ωy, and ωz are the frequencies. Substituting the control input into

Equation (3.1) yields the new system

ẋp = (Ap −BpK)xp + Kxr + w (3.4)

3.2 Disturbance-Accommodating Control

Disturbance-accommodating or disturbance-rejection control is a technique which can be

used to reduce the control effort in the presence of persistent disturbances [23, 24]. This control

works by eliminating parts of the control acceleration, and allows the spacecraft to follow a

trajectory that is closer to a natural periodic solution of the nonlinear equations of motion. As

we are forcing the spacecraft to follow a particular reference orbit with PD control, the nonlinear

gravitational effects can cause constant and/or periodic disturbances, which require a higher

control magnitude to cancel out. As little to nothing is known about the gravitational fields

of asteroids, these disturbances cannot be accurately modeled beforehand,. Therefore we use

an iterative design method to construct a disturbance-accommodating controller. This method

allows the spacecraft to deviate from the reference trajectory and follow one that requires less

∆V.

When first orbiting the gravitating body with only PD control, there exist certain frequency

components (disturbances) in the controlled orbit that need to be consistently damped out via

the control acceleration. These components can be found by examining an FFT (Fast Fourier
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Transform) plot of the control commands along each axis. Once the spectral components have

been identified, we can design periodic disturbance-accommodation filters of the form

α̈i + ω2
xiαi = ux (3.5a)

β̈i + ω2
yiβi = uy (3.5b)

γ̈i + ω2
ziγi = uz (3.5c)

where ωxi, ωyi, and ωzi represent the ith frequency component in each axis, and α, β, and γ

are the corresponding disturbed filter states. If the control inputs are sinusoidal, the solutions

to these differential equations will also be sinusoidal. For constant disturbances, the filters take

the form of

α̇ = ux (3.6a)

β̇ = uy (3.6b)

γ̇ = uz (3.6c)

The disturbance-accommodation filter can include as many frequencies as are present in

the FFT plots. The filter can then be described in state space form

ẋd = Adxd + Bdu (3.7)

xd =



αi

βi

γi

α̇i

β̇i

γ̇i


, Ad =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−ω2
xi 0 0 0 0 0

0 −ω2
yi 0 0 0 0

0 0 −ω2
zi 0 0 0


, Bd =



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


where xd is the disturbance filter state vector. It should be noted that if a frequency or bias

component is not used during the iteration, the corresponding filter state is not included in xd.

The disturbance filter in Equation (3.7) can then be augmented to the system in Equation (3.1)

as follows:
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ẋp

ẋd

 =

Ap 0

0 Ad


xp

xd

+

Bp

Bd

u (3.8)

For a system described by Equation (3.8), with an augmented system matrix A, the control

is now expressed as

u = −K

xp − xr

xd

 (3.9)

In an iterative design, spectral components are identified and added to the disturbance

filter state in Equation (3.7) each time the control is updated. These iterations are necessary

as suppressing frequency components in the control can potentially result in different frequency

components appearing in the control. Normally these frequency components can be character-

ized as some integer combination of the body spin rate and the orbit frequency. After several

iterations, a disturbance-accommodating controller can be designed that results in a drastic

reduction of ∆V. All that is left is find the control gain matrix K, which will be discussed

further in the next section.

3.3 Linear Quadratic Regulator

One method to determine the control gain matrix K is the linear quadratic regulator (LQR)

method. The LQR method uses optimal control theory to solve for a K to minimize the

following performance index

J =
1

2

∫ ∞
0

(xTQx + uTRu)dt (3.10)

where Q and R are user-chosen weighting matrices. Once selected, the control gain matrix K

is found as [24]

K = R−1BTX (3.11)

where X is the symmetric positive semidefinite solution of the algebraic Riccati equation (ARE)

ATX + XA−XBR−1BTX + Q = 0 (3.12)

For a unique solution of X to exist, four conditions must be met:
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1. Q must be symmetric and positive semidefinite;

2. R must be symmetric and positive definite;

3. the pair (A,B) must be controllable (stabilizable);

4. the pair (A,
√

Q
T√

Q) must be observable (detectable).

3.3.1 Bryson Method

For the simpler case of pure PD control, the selection of Q and R is not very important as

most viable matrix choices result in similar performance in terms of stability and ∆V expendi-

ture. Once multiple disturbance-accommodating filters are added, though, the components of

weighting matrices have a much greater influence on the system’s performance. If improperly

selected, the control will not necessarily be near optimum, and results in higher fuel consump-

tion. It is possible to go about this selection process using a trial-and-error process as with

PD control to obtain satisfactory results. The downside to this approach is that it requires a

longer time to complete, especially when the system becomes very complex with a large number

of disturbance filter states. An alternative method, which can provide a good starting point

to reduce the number of design iterations, is the Bryson method [25–27]. This method first

assumes that Q and R are diagonal matrices.

Q = diag[q1, ..., qn], R = diag[r1, ..., rm] (3.13)

The diagonal elements of these matrices are given as

qi =
1

x2i (max)
, i = 1, 2, ..., n (3.14a)

rj =
1

u2j (max)
, j = 1, 2, ...,m (3.14b)

where xi(max) and uj(max) represent the anticipated maximum allowable values of the state

variables and control inputs respectively. If this value is well known, then it will have to be

estimated. Intuitively Equation 3.14 makes sense as variables with tight motion constraints will

have a higher weighting for minimization, whereas variables that are allowed to vary largely

are given less weight.
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CHAPTER 4. SIMULATION AND RESULTS

The previously described gravity models and control techniques are once again applied the

433 Eros. First we will compare the inertia dyadic gravity model with only the ~f (2) term against

various orders of the spherical harmonics expansion. Then using only the polyhedron shape and

spherical harmonics gravity models, we will examine five different orbiting scenarios: a prograde

and retrograde orbit in the XY-plane, a 45◦ inclined orbit, a polar orbit, and hovering in the

body-fixed reference frame. In each of these scenarios, the spacecraft will follow a 35 km radius

circular reference orbit with PD control before disturbance-accommodating filters are added.

Current missions do not typically follow orbits so close to an asteroid, but future missions are

desired to orbit as close as possible to the body. Being able to orbit closer to the asteroid

also allows scientists to observe the object in greater detail, and serves to demonstrate the

capabilities of disturbance-accommodating filtering. For these simulations, it is assumed that

all of the states can be measured for feedback control and the thrusters are capable of producing

the required control accelerations. All scenarios assume an asteroid density of 2.67 g/cm3 and

rotation period of 5.27 hours, and the spherical harmonics uses a reference radius of 16 km.

The shape model, spherical harmonic coefficients, and the inertia dyadic were downloaded from

NASA’s website of shape and gravity models produced by the NEAR Shoemaker mission [22].

4.1 Inertia Dyadic Gravity Model Results

Here a 35 km radius prograde orbit with PD control in the XY-plane is examined using

the inertia dyadic gravity model, a 15th order harmonics expansion, and a 2nd order harmonics

expansion. As can be seen in Figure 4.1, there is a slight magnitude difference in the X- and Y-

directions between the 15th order expansion and the other two models. There is a much larger
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Figure 4.1 Control acceleration histories for the 15th order expansion, 2nd order expansion,

and inertia dyadic models. The 15th order model is plotted on the top and both

the 2nd order and inertia dyadic models are overlayed on the bottom.

distinction in the Z-direction for the given plotting scales, but as the control accelerations in

this direction are an entire order of magnitude smaller than in the X- or Y-direction, these

variations are hardly noticeable when computing the ∆V requirements. To illustrate this, the

control accelerations can be integrated to give a ∆V result of 20.6 m/s for the inertia dyadic

model, 21.37 m/s for the 15th order expansions, and 20.42 m/s for the 2nd order expansion,

which are all within 1 m/s of each other. Similarly with the FFT plots in Figure 4.2, there is

little difference between the three models in the X- and Y-direction, but a noticeable difference

in the Z-direction. Here it is easier to notice that there is virtually no difference between the

inertia dyadic model and a 2nd order harmonic expansion. They are both capable of being

utilized to find the three major frequencies present along the X- and Y-axes, but leave out

the higher frequencies with small amplitudes noticeable with the higher order expansion. It

is highly likely that including terms of a sufficiently high order in ~f (i) would be capable of

simulating these smaller frequency components.
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Figure 4.2 FFT plots for the 15th order expansion, 2nd order expansion, and inertia dyadic

models. The 15th order model is plotted on the top and both the 2nd order and

inertia dyadic models are overlayed on the bottom.

4.2 XY-Plane Prograde Orbit

Now we will examine a prograde orbit in the XY-plane about the asteroid. The orbit begins

on the positive X-axis at the local circular velocity. The resulting orbits, control accelerations,

and FFT plots with only PD control are given in Figures 4.3-4.5. In Figure 4.4, a quick

comparison between the polyhedron model and the harmonics model results show very little

difference in the X- and Y-control and a slight bias difference in the Z-control. Considering that

the Z-control is two orders of magnitude smaller than the more prominent X- and Y-control,

the Z-control difference is essentially negligible. Integrating these control accelerations results

in a ∆V of 21.13 m/s per week with the polyhedron model and 21.37 m/s with the harmonics

model. Figure 4.5 contains the spectral components of the control accelerations. Both models

show five noticeable peaks in the X- and Y-control and two in the Z. For this case, the two

highest peaks in the X and Y FFTs correspond to the orbit frequency (ωorbit = 1.62E-5 Hz) and

twice the asteroid rotation frequency minus three times the orbit frequency (2ωspin− 3ωorbit =

5.67E-5 Hz). Increasing or decreasing the orbit radius would change the numerical values of
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these numbers, but they remained equal to ωorbit and 2ωspin− 3ωorbit as long as the result was

positive. Figures 4.6 and 4.7 show the results of adding disturbance-accommodating filters of

the form given in Equation (3.5) to each of the prominent frequency components. Immediately

it can be seen that the control accelerations decrease to near zero, and the bias in both Z-

controls was completely eliminated. Both models gave a new ∆V requirement of 0.13 m/s per

week. In one iteration, a fuel-efficient controller was able to be designed using this method.

It was mentioned that one of the highest peaks in the X and Y FFT plots corresponded

to 2ωspin − 3ωorbit , and that this relation held no matter the orbital radius as long as the

resulting frequency was positive. So we will look at a case where the asteroid spin rate and

orbit frequency are selected such that 2ωspin − 3ωorbit = 0. Here the orbit frequency remained

unchanged but the asteroid spin rate was changed to 3
2ωorbit. Figure 4.8 shows the resulting PD

control inputs and their corresponding FFT plots. As predicted, the two largest frequencies

in the X and Y FFT plots are still ωorbit and 2ωspin − 3ωorbit. The third, smaller frequency is

2ωorbit.

4.3 XY-Plane Retrograde Orbit

Next we will examine a similar orbit, except being retrograde instead of prograde. Adding

PD control results in a nearly identical ∆V requirement as the prograde case. This would

not be obvious by comparing the prograde control acceleration histories in Figures 4.4 to the

retrograde ones in Figure 4.9. The Z-axis controls for both retrograde and prograde have about

the same amplitude, but the retrograde control oscillates at a higher frequency. On the other

hand, the X- and Y-controls for both cases differ greatly from one another both in shape and

frequency. This is also reflected in the FFT plots of the prograde orbit in Figures 4.5 and the

retrograde orbit in Figure 4.10. While there are about the same number of peaks present, the

frequencies tend to be higher in the retrograde case. The largest peak for the retrograde orbit

also occurs at a higher frequency than the prograde orbit for each axis control, though the

orbit frequency of 1.62E-5 Hz remains a prominent frequency as in the prograde case. After

one iteration of adding filters to the FFT frequencies gave a new ∆V requirement of 0.134 m/s

per week for the polyhedron model and 0.15 m/s for the harmonic model.
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4.4 45◦ Inclined Orbit

Now we will incline the orbit by 45 degrees to command an orbit that is not in any of

the coordinate system planes. When left uncontrolled, an orbit of this type tends to naturally

precess about the asteroid, which can be prevented with the addition of PD control at a ∆V

expense of 17.65 m/s per week for the polyhedron model and 17.59 m/s for the harmonics model.

In this case, the control accelerations along each axis exhibit the same frequency peaks in the

FFT plots, though not necessarily with the same magnitude. Of note is that the orbit frequency

1.62E-5 Hz is once again appearing as a prominent peak along all three axes. Filtering these

frequencies allows the spacecraft to precess as it would naturally about the asteroid while still

being controlled as shown in Figure 4.13. After applying filters to all the frequencies present in

Figure 4.15, the control accelerations go to nearly zero, and the ∆V requirement is reduced to

0.123 m/s per week for the polyhedron model and 0.135 m/s per week for the harmonic model.

4.5 Polar Orbit

Perhaps the most useful orbit to command, in terms of scientific return and imaging, would

be a polar orbit. Whereas an orbit in the XY-plane would be limited to only viewing parts

of the surface in the orbit plane, a polar orbit would be able to view the entire surface due

to the spin of the asteroid. Using PD control, we see the most irregular control acceleration

history out of the four scenarios (Figure 4.18). While there is still periodicity, the curves for

the in-plane controls (X and Z) are not as smooth flowing as those for the inclined, prograde,

or retrograde orbits. Despite being the most irregular, this orbit requires the least amount of

control effort before applying control filters. The polyhedron model requires 16.85 m/s of ∆V

per week, and the harmonic model requires 16.36 m/s. For this orbit, we see the most number

of similar sized frequency peaks appear in the FFTs. Applying filters to each of the frequencies

present reduces the ∆V per week to 0.112 m/s for the polyhedron model and 0.13 m/s for the

harmonics model.
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Figure 4.3 35 km prograde orbit with PD control on top and disturbance-accommodating

control on the bottom.
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Figure 4.4 35 km prograde orbit control acceleration histories with simple PD control. Poly-

hedron model on top and the harmonics model on bottom.
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Figure 4.5 FFT plots of the PD control inputs for the 35 km prograde orbit.
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Figure 4.6 35 km prograde orbit control acceleration histories with disturbance-accommodat-

ing control. Polyhedron model on top and harmonics model on bottom.
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Figure 4.7 FFT plots of the disturbance-accommodating control inputs for the 35 km prograde

orbit.
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Figure 4.8 PD control inputs and their corresponding FFT plots when 2ωspin − 3ωorbit = 0.
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Figure 4.9 35 km retrograde orbit control acceleration histories with PD control.
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Figure 4.10 FFT plots of the PD control inputs for the 35 km retrograde orbit.
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Figure 4.11 35 km retrograde orbit control acceleration histories with disturbance-accommo-

dating control.
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Figure 4.12 FFT plots of the of the disturbance-accommodating control inputs for the 35 km

retrograde orbit.
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Figure 4.13 35 km inclined orbit with PD control on top and disturbance-accommodating

control on the bottom.
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Figure 4.14 Inclined orbit control acceleration histories with PD control.
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Figure 4.15 FFT plots of the PD control inputs for the inclined orbit.
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Figure 4.16 Inclined orbit control acceleration histories with disturbance-accommodating con-

trol.
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Figure 4.17 FFT plots of the disturbance-accommodating control inputs for the inclined orbit.
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Figure 4.18 Polar orbit control accelerations with PD control.
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Figure 4.19 FFT plots of the PD control inputs for the polar orbit.
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Figure 4.20 Polar orbit control accelerations with disturbance-accommodating control.



www.manaraa.com

35

 

0 1 2
x 10-4

0

0.5

1

1.5

2x 10-5 X-channel FFT

Frequency (Hz)

FF
T 

M
ag

ni
tu

de

 

0 1 2
x 10-4

0

0.5

1

1.5

2x 10-5 Y-channel FFT

Frequency (Hz)

FF
T 

M
ag

ni
tu

de
 

0 1 2
x 10-4

0

0.5

1

1.5

2x 10-5 Z-channel FFT

Frequency (Hz)

FF
T 

M
ag

ni
tu

de

Figure 4.21 FFT plots of the disturbance accommodating-control inputs for the polar orbit.

4.6 Center of Mass Offset

The previous orbiting examples assumed that the asteroid’s center of mass (COM) was

known with a fair degree of accuracy. Here we test the controller’s performance when the COM

is incorrectly estimated. First a large, worst-case scenario COM location estimation error of one

kilometer is assumed along the negative Z-axis. The spacecraft is then commanded to follow

a prograde, 35 km radius circular orbit in the assumed XY-plane around this estimated COM

(located at the origin of the coordinate system in Figure 4.22) as done in the previous orbiting

scenarios. Using only PD control, the spacecraft is forced to stay in a circular orbit below the

true XY-plane with the ∆V requirements being only a few m/s higher than the prograde case

around the true COM. Following the usual procedure, the disturbance frequencies are identified

from the FFT plots of the control inputs, and used to create a disturbance-accommodating

controller. Once implemented, the spacecraft can be seen to oscillate around the true COM

located at +1 km along the Z-axis with a ∆V requirement of 0.13 m/s per week. Given the
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Figure 4.22 Center of mass location error estimation with PD control (top) and distur-

bance-accommodating control (bottom).

shown robustness of disturbance-accommodating control, the true COM of an asteroid can be

estimated with a fair degree of accuracy using this type of control as the controlled stable orbit

tends to naturally find this point, and orbit about it.

4.7 Body-Frame Hovering

The last scenario we will examine is hovering in the body-fixed reference frame. Hovering

in this case entails finding a reference orbit which has the same period as the asteroid’s rotation

rate of 5.27 hours. For 433 Eros, the reference circular orbit with the appropriate period is

slightly less than 16 km in radius. This radius can be problematic as some dimensions of

Eros can also approach 16 km in radius. Thus in order to simulate the hovering case, the

spacecraft will have to be placed in areas where the asteroid’s radius is significantly smaller

such as along the y-axis. As the orbit is slightly less than 16 km, only the polyhedron and

inertia dyadic models can be used due to the spherical harmonics unreliability at and below its
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Figure 4.23 Hovering scenario with PD and disturbance-accommodating control in the body–

fixed frame.

minimum circumscribing sphere radius. Since the inertia dyadic model was shown to be similar

to a second-order harmonic expansion, the polyhedron shape model will be used instead to

obtain more accurate results even though it is computationally slower. Figure 4.23 shows the

results of hovering with PD and disturbance-accommodating control in the body-fixed frame.

Maintaining the orbit with PD control requires an exorbitant amount of fuel at 199 m/s per

week. Here the disturbance-accommodating filters are able to achieve the best reduction yet to

0.5 m/s per week. The large ∆V requirement for PD control appears to be due to the assumed

initial position not being close enough to the actual 1:1 orbit as we see the spacecraft position

drift significantly in the positive x-direction when control filters are added.
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Figure 4.24 Control inputs and their corresponding FFT plots for they hovering scenario in

the body-fixed frame.
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CHAPTER 5. CONCLUSIONS

This work investigated the orbital control problem of proximity operations around an ar-

bitrarily shaped asteroid incorporating three different models for simulating the weak, non-

uniform gravitational fields produced by irregular-shaped bodies. Each of these models was

shown to have their advantages and disadvantages from a simulation standpoint. The polyhe-

dron shape model was capable of simulating a gravitational field similar to the more typically

used high order spherical harmonic expansion using only the shape of the body and without

suffering from regions of invalidity. A drawback of this model is the significantly longer com-

putation time than either the spherical harmonic expansion or inertia dyadic models. It was

also demonstrated that a low-order approximation (∼ 2nd order) could be obtained using the

inertia dyadic of the gravitating body. This model, though, tends to become inaccurate close

to the center of the asteroid body.

Using the developed and tested microgravity environments, the viability and robustness of

simple feedback control augmented with disturbance-accommodating filters was then examined.

For each of the orbiting scenarios presented, the controller was able to maintain stable orbital

motion with very little control effort. In each case except for the body-frame hovering, the ∆V

was reduced to between 0.1-0.2 m/s per week. Even then, the hovering case was still able to be

reduced from nearly 200 m/s per week to 0.5 m/s. This fuel-efficient control scheme could be

used to reduce reliance on ground-based commands, and is more advantageous than open-loop

solutions as prior knowledge of the body is not required for implementation. This is due to

only needing the control acceleration history to know at which frequencies that control filters

should be tuned. The biggest advantage is that we are able to command arbitrary orbits with

this form of active control without prior regard to the orbital stability as was necessary in the

previous asteroid orbiting operations of NEAR and Dawn.
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5.1 Recommendations for Future Work

The current research only included perturbing forces from the asteroid’s irregular gravi-

tational field. Future work could incorporate other perturbing forces such as solar radiation

pressure in order to increase the accuracy of the dynamical model. Also, the entirety of the

control scheme outlined in this work relies on being able to accurately determine a spacecraft’s

state vector with respect to the asteroid’s center of mass. Here the state vector measurements

were assumed to be given with a large degree of accuracy in order to verify the validity of this

approach. The next logical step could be to integrate optical navigation methods with this

control scheme to autonomously estimate the state vector using a combination of data from

optical cameras and LIDAR technologies. Both of these devices are already built into most

spacecraft, and would realistically simulate the station-keeping activities of an actual deep

space exploration mission.
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APPENDIX A. SHPERICAL HARMONIC COEFFICIENTS FOR

ASTEROID 433 EROS

Table A.1 Normalized spherical harmonic coefficients up to the sixth order and degree [22].

Order Degree C̄n,m S̄n,m
0 0 1 0

1 0 0 0

1 0 0

0 -0.05246 0

2 1 0 0

2 0.08240 -0.02811

0 -0.00141 0

3 1 0.00406 0.00337

2 0.00177 -0.00070

3 -0.01042 -0.01207

0 0.01293 0

1 -0.00010 0.00014

4 2 -0.01747 0.00463

3 -0.00030 -0.00012

4 0.01746 -0.00911

0 0.00066 0

1 -0.00276 -0.00122

5 2 -0.00078 -0.00038

3 0.00458 0.00354

4 0.00050 -0.00070

5 -0.01021 -0.00584

0 -0.00498 0

1 -0.00002 -0.00012

2 0.00654 -0.00119

6 3 0.00029 0.00007

4 -0.00565 0.00177

5 -0.00049 0.00005

6 0.00508 -0.00160
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APPENDIX B. INERTIA DYADIC GRAVITATIONAL FORCE

DERIVATION [18]

Start at the general equation for gravitational attraction.

~F = −Gm
∫
~p(~p · ~p)−3/2ρdV (B.1)

Substitute ~R+ ~r in for ~p

~F = −Gm
∫

(~R+ ~r)(~R2 + 2~R · ~r + ~r2)−3/2ρdV (B.2)

where ~R2 represents ~R · ~R = |~R|2 = R2. Now define a vector ~q and the unit vector ~er as

~q ≡ ~r

R
~er =

~R

R
(B.3)

Substitute Equation B.3 into Equation B.2.

~F = −Gm
∫

(R−3)(~R+ ~r)(1 + 2
~R

R
· ~r
R

+
~r2

R2
)−3/2ρdV

= −Gm
R2

∫
(
~R

R
+
~r

R
)(1 + 2

~R

R
· ~r
R

+
~r2

R2
)−3/2ρdV (B.4)

= −Gm
R2

∫
(~er + ~q)(1 + 2~er · ~q + ~q2)−3/2ρdV

Assuming 2~er · ~q + ~q2 < 1 and using the binomial series expansion

(1 + x)n =
∞∑
k=0

n!xk

(n− k)!k!
= 1 + nx+

1

2!
n(n− 1)x2 +

1

3!
n(n− 1)(n− 2)x3 + . . . (B.5)

Equation B.4 becomes
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~F = −Gm
R2

∫
(~er + ~q)[1− 3

2
(2~er · ~q + ~q2) +

15

8
(4(~er · ~q)2 + 4~q2~er · ~q + ~q4) (B.6)

− 105

48
(8(~er · ~q)3 + 12~q2(~er · ~q)2) + . . .]ρdV

Expanding and ignoring terms of ~q3 and higher yields

~F = −Gm
R2

∫
{~er[1−

3

2
(2~er · ~q + ~q2) +

15

2
(~er · ~q)2] + ~q[1− 3~er · ~q]}ρdV (B.7)

= −Gm
R2

∫
{~er[1−

3

2
(2~er ·

~r

R
+
~r2

R2
) +

15

2
(~er ·

~r

R
)2] +

~r

R
[1− 3~er ·

~r

R
]}ρdV

= −Gm
R2

∫
{~er −

3

R
~er~er · ~r −

3

2R2
~er~r

2 +
15

2R2
~er~er · ~r~r · ~er +

~r

R
− 3

R2
~r~r · ~er}ρdV

As ~r is taken from the center of mass, the integral
∫
~rρdV = 0 and

∫
ρdV = m̄

~F = −Gm̄m
R2

~er −
3Gm

2R4

∫
{−~er~r2 + 5~er~er · ~r~r · ~er − 2~r~r · ~er}ρdV (B.8)

= −Gm̄m
R2

~er +
3Gm

2R4
{~er
∫
~r2ρdV − 5~er~er ·

∫
~r~rρdV · ~er + 2

∫
~r~rρdV · ~er}

The relation to the inertia dyadic comes from the definition of the inertia dyad:

Ĩ =

∫
(Ũ~r2 − ~r~r)ρdV (B.9)

where Ũ denotes the unit dyadic. Using the trace operation defined in Equation 2.24, Equa-

tion B.9 becomes

tr(Ĩ) =

∫
[tr(Ũ~r2)− tr(~r~r)]ρdV =

∫
(3~r2 − ~r2)ρdV = 2

∫
~r2ρdV (B.10)

Equation B.9 can also be rearranged to yield

∫
~r~rρdV = Ũ

∫
~r2ρdV − Ĩ =

1

2
Ũ · tr(Ĩ)− Ĩ (B.11)

Substituting Equations B.10 and B.11 into Equation B.8 gives
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~F = −Gm̄m
R2

~er +
3Gm

2R4
{1

2
tr(Ĩ)~er − 5~er~er · (

1

2
Ũ · tr(Ĩ)− Ĩ) · ~er (B.12)

+ 2(
1

2
Ũ · tr(Ĩ)− Ĩ) · ~er}

= −Gm̄m
R2

~er +
3Gm

2R4
{1

2
tr(Ĩ)~er −

5

2
~er~er · Ũ · tr(Ĩ) · ~er + 5~er~er · Ĩ · ~er

+ Ũ · tr(Ĩ) · ~er − 2Ĩ · ~er}

= −Gm̄m
R2

~er +
3Gm

2R4
{1

2
tr(Ĩ)~er −

5

2
tr(Ĩ)~er + 5~er~er · Ĩ · ~er + tr(Ĩ)~er − 2Ĩ · ~er}

= −Gm̄m
R2

~er +
3Gm

2R4
{−tr(Ĩ)~er + 5~er~er · Ĩ · ~er − 2Ĩ · ~er}

= −Gm̄m
R2

~er −
3Gm

2R4
{tr(Ĩ)~er − 5~er~er · Ĩ · ~er + 2Ĩ · ~er}

= −Gm̄m
R2

[~er +
1

m̄R2
{3

2
[tr(Ĩ)− 5~er · Ĩ · ~er]~er + 3Ĩ · ~er}]

= −Gm̄m
R2

[~er + ~f (2)]
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